Advancing soil ecological risk assessments for petroleum hydrocarbon contaminated soils in Canada: Persistence, organic carbon normalization and relevance of species assemblages
Sediment toxicity studies and ecological risk assessments on organic contaminantsroutinely apply organic carbon normalization to toxicity data; however, no studies examine its potential for use in soils with petroleum hydrocarbon (PHC) contamination. Limited studies in soil ecotoxicology assess the influence of species assemblages used in species sensitivity distribution construction on the resulting guideline designated to of soil dwelling organisms. Canadian regulations utilize more conservative approaches to deriving guidelines with soil ecotoxicology data compared to the rest of the world, so we investigated the impact of these on soil invertebrates in a variety of field soils. In addition to toxicity, the persistence of a medium PHC mixture was also assessed in the field soils to determine the duration of toxic effects. We found organic matter influenced PHC toxicity to soil invertebrates, but persistence was influenced more by soil cation exchange capacity. Incorporating organic carbon normalization into species sensitivity distribution curves provided a higher level of protection to soil dwelling receptors in low organic matter soils as well as reduce the variability of PHC soil toxicity data. Soil remediation guidelines derived for protection of soil dwelling organisms using a diverse species assemblage provided similar levels of protection as guidelines developed with test species specific for remote, forested land uses in Canada. We conclude that: (i) Canadian hazard concentration values for PHC contamination of soils should be revisited as they may not be protective and (ii) that soil PHC guidelines for protection of soil dwelling organisms should be expressed as carbon normalized values.